Further processing options
online resource

Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence

Bibliographic Details
Authors and Corporations: Kim, Jeongwoo (Author)
Title: Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence
Language: English
published:
[S.l.] SSRN [2014]
Item Description: 1 Online-Ressource (14 p) ; Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 17, 2014 erstellt
DOI: 10.2139/ssrn.2481956
LEADER 02286cam a22004932 4500
001 0-1792231121
003 DE-627
005 20220403111614.0
007 cr uuu---uuuuu
008 220219s2014 xx |||||o 00| ||eng c
024 7 |a 10.2139/ssrn.2481956  |2 doi 
035 |a (DE-627)1792231121 
035 |a (DE-599)KEP074395831 
035 |a (OCoLC)1308850465 
035 |a (ELVSSRN)2481956 
035 |a (EBP)074395831 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a E44  |2 JEL 
084 |a G10  |2 JEL 
084 |a N20  |2 JEL 
100 1 |a Kim, Jeongwoo  |4 aut 
245 1 0 |a Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence 
264 1 |a [S.l.]  |b SSRN  |c [2014] 
300 |a 1 Online-Ressource (14 p) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 17, 2014 erstellt 
506 0 |a Open Access  |e Controlled Vocabulary for Access Rights  |u http://purl.org/coar/access_right/c_abf2  |f unrestricted online access 
520 |a I adopt a regime shift model to investigate a shift of distribution of each regime during a time series data. Unlike previous studies, I applied three types of distribution to use a regime shift model, i.e., normal, GEV and stable distribution, which allows me to consider a heavy tail regime in the model. From some theoretical basis and empirical results, I find that the regime shift model in stable distribution is best appropriate. I also find that tail index of the innovation and dependence measure move together, implying dependence among a consecutive data may lead extreme event and vice versa 
856 4 0 |u https://ssrn.com/abstract=2481956  |m X:ELVSSRN  |x Verlag  |z kostenfrei 
856 4 0 |u https://doi.org/10.2139/ssrn.2481956  |m X:ELVSSRN  |x Resolving-System  |z kostenfrei 
912 |a ZDB-33-SFEN 
951 |a BO 
856 4 0 |u https://doi.org/10.2139/ssrn.2481956  |9 LFER 
856 4 0 |u https://ssrn.com/abstract=2481956  |9 LFER 
852 |a LFER  |z 2022-10-21T17:56:35Z 
970 |c OD 
971 |c EBOOK 
972 |c EBOOK 
973 |c EB 
935 |a lfer 
980 |a 1792231121  |b 0  |k 1792231121  |c lfer 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Regime+Shift+Model+by+Three+Types+of+Distribution+Considering+a+Heavy+Tail+and+Dependence&rft.date=%5B2014%5D&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Kim%2C+Jeongwoo&rft.pub=SSRN&rft.format=eBook&rft.language=English
SOLR
_version_ 1750435227493203968
access_facet Electronic Resources
access_state_str Open Access
author Kim, Jeongwoo
author_facet Kim, Jeongwoo
author_role aut
author_sort Kim, Jeongwoo
author_variant j k jk
callnumber-sort
collection ZDB-33-SFEN, lfer
contents I adopt a regime shift model to investigate a shift of distribution of each regime during a time series data. Unlike previous studies, I applied three types of distribution to use a regime shift model, i.e., normal, GEV and stable distribution, which allows me to consider a heavy tail regime in the model. From some theoretical basis and empirical results, I find that the regime shift model in stable distribution is best appropriate. I also find that tail index of the innovation and dependence measure move together, implying dependence among a consecutive data may lead extreme event and vice versa
ctrlnum (DE-627)1792231121, (DE-599)KEP074395831, (OCoLC)1308850465, (ELVSSRN)2481956, (EBP)074395831
doi_str_mv 10.2139/ssrn.2481956
facet_912a ZDB-33-SFEN
facet_avail Online, Free
finc_class_facet not assigned
footnote Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 17, 2014 erstellt
format eBook
format_access_txtF_mv Book, E-Book
format_de105 Ebook
format_de14 Book, E-Book
format_de15 Book, E-Book
format_del152 Buch
format_detail_txtF_mv text-online-monograph-independent
format_dezi4 e-Book
format_finc Book, E-Book
format_legacy ElectronicBook
format_legacy_nrw Book, E-Book
format_nrw Book, E-Book
format_strict_txtF_mv E-Book
geogr_code not assigned
geogr_code_person not assigned
id 0-1792231121
illustrated Not Illustrated
imprint [S.l.], SSRN, [2014]
imprint_str_mv [S.l.]: SSRN, [2014]
institution DE-D117, DE-105, LFER, DE-Ch1, DE-15, DE-14, DE-L242, DE-Zwi2
is_hierarchy_id
is_hierarchy_title
isil_str_mv LFER
kxp_id_str 1792231121
language English
last_indexed 2022-11-25T02:58:38.823Z
marc024a_ct_mv 10.2139/ssrn.2481956
match_str kim2014regimeshiftmodelbythreetypesofdistributionconsideringaheavytailanddependence
mega_collection Verbunddaten SWB, Lizenzfreie Online-Ressourcen
misc_de105 EBOOK
oclc_num 1308850465
physical 1 Online-Ressource (14 p)
publishDate [2014]
publishDateSort 2014
publishPlace [S.l.]
publisher SSRN
record_format marcfinc
record_id 1792231121
recordtype marcfinc
rvk_facet No subject assigned
score 17,744274
source_id 0
spelling Kim, Jeongwoo aut, Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence, [S.l.] SSRN [2014], 1 Online-Ressource (14 p), Text txt rdacontent, Computermedien c rdamedia, Online-Ressource cr rdacarrier, Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 17, 2014 erstellt, Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 unrestricted online access, I adopt a regime shift model to investigate a shift of distribution of each regime during a time series data. Unlike previous studies, I applied three types of distribution to use a regime shift model, i.e., normal, GEV and stable distribution, which allows me to consider a heavy tail regime in the model. From some theoretical basis and empirical results, I find that the regime shift model in stable distribution is best appropriate. I also find that tail index of the innovation and dependence measure move together, implying dependence among a consecutive data may lead extreme event and vice versa, https://ssrn.com/abstract=2481956 X:ELVSSRN Verlag kostenfrei, https://doi.org/10.2139/ssrn.2481956 X:ELVSSRN Resolving-System kostenfrei, https://doi.org/10.2139/ssrn.2481956 LFER, https://ssrn.com/abstract=2481956 LFER, LFER 2022-10-21T17:56:35Z
spellingShingle Kim, Jeongwoo, Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence, I adopt a regime shift model to investigate a shift of distribution of each regime during a time series data. Unlike previous studies, I applied three types of distribution to use a regime shift model, i.e., normal, GEV and stable distribution, which allows me to consider a heavy tail regime in the model. From some theoretical basis and empirical results, I find that the regime shift model in stable distribution is best appropriate. I also find that tail index of the innovation and dependence measure move together, implying dependence among a consecutive data may lead extreme event and vice versa
title Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence
title_auth Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence
title_full Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence
title_fullStr Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence
title_full_unstemmed Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence
title_short Regime Shift Model by Three Types of Distribution Considering a Heavy Tail and Dependence
title_sort regime shift model by three types of distribution considering a heavy tail and dependence
url https://ssrn.com/abstract=2481956, https://doi.org/10.2139/ssrn.2481956